26,985 research outputs found

    Cellular automaton supercolliders

    Get PDF
    Gliders in one-dimensional cellular automata are compact groups of non-quiescent and non-ether patterns (ether represents a periodic background) translating along automaton lattice. They are cellular-automaton analogous of localizations or quasi-local collective excitations travelling in a spatially extended non-linear medium. They can be considered as binary strings or symbols travelling along a one-dimensional ring, interacting with each other and changing their states, or symbolic values, as a result of interactions. We analyse what types of interaction occur between gliders travelling on a cellular automaton `cyclotron' and build a catalog of the most common reactions. We demonstrate that collisions between gliders emulate the basic types of interaction that occur between localizations in non-linear media: fusion, elastic collision, and soliton-like collision. Computational outcomes of a swarm of gliders circling on a one-dimensional torus are analysed via implementation of cyclic tag systems

    Time-Delayed transfer functions simulations for LMXBs

    Full text link
    Recent works (Steeghs & Casares 2002, Casares et al. 2003, Hynes et al. 2003) have demonstrated that Bowen flourescence is a very efficient tracer of the companion star in LMXBs. We present a numerical code to simulate time-delayed transfer functions in LMXBs, specific to the case of reprocessing in emission lines. The code is also able to obtain geometrical and binary parameters by fitting observed (X-ray + optical) light curves using simulated annealing methods. In this work we present the geometrical model for the companion star and the analytical model for the disc and show synthetic time-delay transfer functions for different orbital phases and system parameters.Comment: Contribution presented at the conference "Interacting Binaries: Accretion, Evolution and Outcomes", held in Cefalu, Sicily (Italy) in July 2004. To be published by AIP (American Institute of Physics), eds. L. A. Antonelli, L. Burderi, F. D'Antona, T. Di Salvo, G.L. Israel, L. Piersanti, O. Straniero, A. Tornambe. 4 pages, 4 figure

    Self-Similarity and Lamperti Convergence for Families of Stochastic Processes

    Full text link
    We define a new type of self-similarity for one-parameter families of stochastic processes, which applies to a number of important families of processes that are not self-similar in the conventional sense. This includes a new class of fractional Hougaard motions defined as moving averages of Hougaard L\'evy process, as well as some well-known families of Hougaard L\'evy processes such as the Poisson processes, Brownian motions with drift, and the inverse Gaussian processes. Such families have many properties in common with ordinary self-similar processes, including the form of their covariance functions, and the fact that they appear as limits in a Lamperti-type limit theorem for families of stochastic processes.Comment: 23 pages. IMADA preprint 2010-09-0
    • 

    corecore